

Il Farmaco 57 (2002) 1-8

IL FARMACO

www.elsevier.com/locate/farmac

# Quinoxaline chemistry. Part 14. 4-(2-Quinoxalylamino)-phenylacetates and 4-(2-quinoxalylamino)-phenylacetyl-L-glutamates as analogues-homologues of classical antifolate agents. Synthesis and evaluation of in vitro anticancer activity

Sandra Piras, Mario Loriga, Giuseppe Paglietti \*

Dipartimento Chimico Tossicologico, Università di Sassari, Via Muroni, 23, 07100 Sassari, Italy Received 3 March 2001; accepted 25 July 2001

#### Abstract

Among a new series of 26 4-(3-substituted-2-quinoxalylamino)phenylacetates and 4-(3-substituted-2-quinoxalylamino)-phenylacetyl-L-glutamates, eight were selected at NCI for evaluation of their in vitro anticancer activity. The results obtained in comparison with the corresponding nor-compounds series seem to indicate that this type of homologation is not helpful. © 2002 Elsevier Science S.A. All rights reserved.

Keywords: Anticancer activity; Quinoxalines derivatives; (Quinoxalylamino)-phenylacetates and (quinoxalylamino)-phenylacetyl-L-glutamate

### 1. Introduction

Bioisosteric replacement of the pteridine ring in the classical antifolates with quinoxaline has proved to be a good substrate for the biological activity as both in vitro anticancer and anti-DHFR [1-8]. Among the various types of quinoxalines designed for this purpose we have considered the effect of homologation in both para positions of the benzoyl-glutamate moiety. The series of quinoxalines bearing at 2 position the aminomethylbenzoylglutamate moiety has just appeared [9]. In this report we describe the synthesis of compounds 3-28 where homologation takes place on the side of the carboxylic moiety. In the heterocyclic ring we have placed the usual substitutions that in previous cases had shown the most similarities with the classical antifolates and they are reported in Fig. 1.

### 2. Chemistry

The starting material for the preparation of compounds 3-28 is represented by the chloroquinoxalines **1a**-**f** of Scheme 1, which were all obtained according to previously reported procedures [1,3,9-12]. Nucleophilic attack by ethyl *p*-aminophenylacetate gave compounds 3-8 in good yields. Conversion by alkaline hydrolysis into the acids 9-14 was necessary for elongation of side chain with diethyl L-glutamate in the presence of diethylcvanophosphonate and triethylamine to give the esters 15-20. In the case of the esters 6,7 and 8 saponification occurred also at the ester group in C-3 to give the acids 12, 13 and 14 which only in the case of 12 and 13 underwent further amidification with diethyl L-glutamate at carboxy group in position 3 to give the ester amides 27, 28. In the end the desired acids 21-26were obtained by alkaline hydrolysis in hydroalcoholic medium.

### 3. Experimental

Melting points are uncorrected and were recorded on a Kofler or an Electrothermal melting point apparatus.

<sup>\*</sup> Correspondence and reprints.

E-mail address: paglieti@ssmain.uniss.it (G. Paglietti).

UV spectra are qualitative and were recorded in nm in ethanol solution with a Perkin–Elmer Lambda 5 spectrophotometer. IR spectra (Nujol mulls) were recorded with Perkin–Elmer 781 instrument. <sup>1</sup>H NMR spectra were recorded at 200 MHz with a Varian XL-200 instrument using TMS as internal standard. Elemental analyses were performed at Laboratorio di Microanalisi, Dipartimento di Scienze Farmaceutiche, University of Padua. The analytical results for C, H, and N were within +0.4% of the theoretical values.

### 3.1. Chemistry

#### 3.1.1. Intermediates

The intermediate chloroquinoxalines necessary for this work were known and prepared according to the data of the literature as follow: **1a** [10], **1b** [11], **1c** [3], **1d** [12], **1e** [9], and **1f** [1].





| Compd | R            | <b>R</b> <sub>1</sub>      | R <sub>2</sub> |
|-------|--------------|----------------------------|----------------|
| 2     | Dh           | п                          | OEt            |
| 3     |              |                            | OEt            |
| 4     | <u>2-111</u> |                            |                |
| 5     | H            | 0,/-F                      | OEt            |
| 6     | COOEt        | H                          | OEt            |
| 7     | COOEt        | 7 <b>-</b> CF <sub>3</sub> | OEt            |
| 8     | COOEt        | 6,7 <b>-</b> F             | OEt            |
| 9     | Ph           | H                          | OH             |
| 10    | 2-Th         | Н                          | OH             |
| 11    | Н            | 6,7 <b>-</b> F             | OH             |
| 12    | COOH         | Н                          | OH             |
| 13    | COOH         | 7-CF <sub>3</sub>          | OH             |
| 14    | СООН         | 6,7-F                      | OH             |
| 15    | Ph           | Н                          | GluEt          |
| 16    | 2-Th         | Н                          | GluEt          |
| 17    | Н            | 6,7 <b>-</b> F             | GluEt          |
| 18    | COOH         | Н                          | GluEt          |
| 19    | СООН         | 7-CF3                      | GluEt          |
| 20    | СООН         | 6,7 <b>-</b> F             | GluEt          |
| 21    | Ph           | Н                          | GluH           |
| 22    | 2-Th         | Н                          | GluH           |
| 23    | Н            | 6,7 <b>-</b> F             | GluH           |
| 24    | СООН         | Н                          | GluH           |
| 25    | COOH         | 7-CF <sub>3</sub>          | GluH           |
| 26    | COOH         | 6,7 <b>-</b> F             | GluH           |
| 27    | COGluEt      | Н                          | GluEt          |
| 28    | COGluEt      | 7-CF <sub>3</sub>          | GluEt          |

Fig. 1. Compounds 3-28 obtained according to Scheme 1.

# 3.1.2. General procedure for the preparation of the esters 3-8

A mixture of equimolar amounts (2 mmol) of chloroquinoxalines (1a-f) and commercially available (Aldrich) ethyl 4-aminophenylacetate in ethanol (10 ml) was refluxed for 13 h (compounds 5–7), for 24 h (compounds 4, 8) and for 72 h (compound 3). On cooling the yellow–orange precipitates were collected and washed with ethanol to give 3–8 as crude products which were recrystallized from ethanol. Yields, m.p. values, analytical and spectroscopic (IR, UV, <sup>1</sup>H NMR) data are reported in Table 1.

# 3.1.3. General procedure for the preparation of the acids 9-14

A mixture of the ester (3-8) (0.7 mmol) in ethanol (10 ml) and 2M NaOH (5 ml) in the case of compounds 3, 4 or 1M NaOH (5 ml) in the case of compounds 5-8was stirred at room temperature for 2.5 h (3, 4) and under reflux for 4 h (5-8). On evaporation of the solvent, the mixture was taken up with water and made acidic with 2 M HCl. The red-orange products (9-14) were collected and washed with water. Yields, m.p. values, analytical and spectroscopic data are reported in Table 1.

# 3.1.4. General procedure for the preparation of the esters 15–20 and isolation of compounds 27, 28

An equimolar mixture (1.2 mmol) of compounds (9–11), diethyl L-glutamate hydrochloride and diethyl cyanophosphonate in the presence of 2 mole equiv. of TEA, and a ratio of 1:2:2 and 4 mole equiv. of TEA in the case of 12-14, was stirred under nitrogen at room temperature for 2 h. The resulting solution was poured into a mixture of ethyl acetate and benzene in 3:1 ratio (60 ml). The organic phase was shaken with water (50 ml), then with saturated sodium carbonate aqueous solution (60 ml), rewashed with water (50 ml) and, if necessary, with saturated sodium chloride aqueous solution. Eventually, after drying over anhydrous sodium sulfate, on evaporation of the solvent compounds 15-17, 27, 28 were obtained as yellow-orange solids. From the alkaline mother liquors, on standing compounds 18-20 were separated as pure yellow solids. Yields, m.p. values, analytical and spectroscopic data are reported in Table 1.

# 3.1.5. General procedure for the preparation of the acids 21-26

A suspension of the ester (15-20) (1 mmol) in a mixture of ethanol (10 ml) and 1 M NaOH (5 ml) was stirred at room temperature for 4 h. The red-orange solution formed was evaporated in vacuo and taken up with water then made acidic with 2 M HCl. A solid from yellow to red was collected and thoroughly washed with water and eventually dried. Yields, m.p.

| Table 1                                                 |                                                         |
|---------------------------------------------------------|---------------------------------------------------------|
| Melting point, yield, analytical and spectroscopic (IR, | UV, <sup>1</sup> H NMR) data of the compounds of Fig. 1 |

| Comp. | m.p. (°C) <sup>a</sup> | Yield (%) | Analysis for            | IR (nujol) ( $v_{max}$ cm <sup>-1</sup> ) | UV (EtOH) $(\lambda_{\max} nm)$ | <sup>1</sup> H NMR, $\delta_{\rm H}$ (J in Hz) <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|------------------------|-----------|-------------------------|-------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | 65–68 (a)              | 50        | $C_{24}H_{21}N_3O_2$    | 3380, 1710                                | 370, 270, 211,                  | [A] 7.99–7.77 (2H, m, arom.), 7.76–7.44 (7H, m, arom), 7.72 (2H, d, $J = 8.4$ , H-2',6', 7.29<br>(2H, d, $J = 8.4$ , H-3',5', 4.14 (2H, a, CH), 3.60 (2H, s, CH), 1.26 (2H, t, CH))                                                                                                                                                                                                                                                                                                                                    |
| 4     | 69–71 (a)              | 51        | $C_{22}H_{19}N_3O_2S$   | 3400, 1720                                | 385, 276, 196                   | [A] 7.98–7.92 (1H, m, arom.), 7.86–7.72 (1H, m, arom.), 7.77 (2H, d, $J = 8.6$ , H-2',6'), 7.31 (2H, d, $J = 8.6$ , H-3',5'), 7.29–7.25 (1H, m, arom.), 4.15 (2H, q, CH <sub>2</sub> ), 3.62 (2H, s, CH <sub>2</sub> ), 1.27 (3H + CH)                                                                                                                                                                                                                                                                                 |
| 5     | 130–133 (a)            | 62        | $C_{18}H_{15}F_2N_3O_2$ | 3380, 1720                                | 382, 332, 283,<br>208           | [A] 8.34 (1H, s, H-3), 7.64 (1H, dd <sup>p</sup> , $J = 11.2$ and 8.0, H-8), 7.63 (2H, d, $J = 8.4$ , H-2',6'),<br>7.49 (1H, dd, $J = 8.0$ and 11.2, H-5), 7.29 (2H, d, $J = 8.4$ , H-3',5'), 4.19 (2H, q, CH <sub>2</sub> ), 3.63<br>(2H, s, CH <sub>2</sub> ) 1.29 (3H, t, CH <sub>2</sub> )                                                                                                                                                                                                                         |
| 6     | 78–80 (a)              | 62        | $C_{21}H_{21}N_3O_4$    | 3460, 3320, 1730,<br>1700                 | 425, 290, 222,<br>206           | [A1, 9, 612), 125 (11, 9, 613)<br>[A] 10.33 (1H, s, NH), 8.04 (1H, d, $J = 8.2$ , arom.), 7.88 (2H, d, $J = 8.4$ , H-2',6'), 7.86–7.67 (2H, m, arom.), 7.52–7.45 (1H, m, arom.), 7.32 (2H, d, $J = 8.4$ , H-3',5'), 4.60 (2H, q, CH <sub>2</sub> ), 4.17 (2H, q, CH <sub>2</sub> ), 3.62 (2H, s, CH <sub>2</sub> ), 1.54 (3H, t, CH <sub>2</sub> ), 1.27 (3H, t, CH <sub>2</sub> )                                                                                                                                     |
| 7     | 112–115 (a)            | 68        | $C_{22}H_{20}F_3N_3O_4$ | 3340, 1725, 1690                          | 427, 304, 287,<br>219           | [A] 10.39 (1H, s, NH), 8.14 (1H, d, $J = 8.8$ , H-5), 8.08 (1H, s, H-8), 7.86 (2H, d, $J = 8.4$ , H-2',6'), 7.64 (1H, dd, $J = 1.8$ and 1.8, H-6), 7.34 (2H, d, $J = 8.4$ , H-3',5'), 4.61 (2H, q, CH <sub>2</sub> ), 4.17 (2H, q, CH <sub>2</sub> ), 3.63 (2H, s, CH <sub>2</sub> ), 1.54 (3H, t, CH <sub>2</sub> ), 1.31 (3H, t, CH <sub>2</sub> )                                                                                                                                                                   |
| 8     | 72–74 (a)              | 49        | $C_{21}H_{19}F_2N_3O_4$ | 3280, 1730, 1690                          | 426, 288, 219                   | [A] 10.34 (1H, s, NH), 7.81 (2H, d, $J = 8.6$ , H-2',6'), 7.78 (1H, dd, <sup>p</sup> 11.0 and 8.0 H-8), 7.51 (1H, dd, $J = 11$ and 8.0, H-5), 7.32 (2H, d, $J = 8.6$ , H-3',5'), 4.59 (2H, q, CH <sub>2</sub> ), 4.21 (2H, q, CH <sub>2</sub> ), 3.63 (2H, s, CH <sub>2</sub> ), 1.53 3H, t, CH <sub>2</sub> ), 1.27 (3H, t, CH <sub>2</sub> )                                                                                                                                                                         |
| 9     | 200–203                | 85        | $C_{22}H_{17}N_3O_2$    | 1720                                      | 392, 285, 206                   | [A] 8.00–7.72 (2H, m, arom.), 7.75 (2H, d, $J = 8.4$ , H-2',6'), 7.70–7.35 (7H, m, arom.), 7.28 (2H, d, $J = 8.4$ , H-3',5'), 7.09 (1H, s, NH), 3.66 (2H, s, CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                         |
| 10    | 174–177                | 95        | $C_{20}H_{15}N_3O_2S$   | 1720                                      | 388, 277, 196                   | [A] 7.96–7.72 (2H, m, arom.), 7.78 (d, $J = 8.2$ , H-2',6), 7.66–7.42 (4H, m, arom.), 7.32 (2H, d, $J = 8.2$ , H-3',5'), 7.29–7.23 (1H, m, arom.), 3.66 (2H, s, CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                      |
| 11    | 205 (d)                | 87        | $C_{16}H_{11}F_2N_3O_2$ | 3450, 3300, 3210,<br>3150, 1700           | 384, 281, 207                   | [B] 9.80 (1H, s, NH), 8.56 (1H, s, H-3), 7.88 (2H, d, $J = 8.4$ , $H-2',6'$ ), 7.64 (1H, dd, $J = 11.4$ and 8.2, H-8), 7.51 (dd, $J = 11.4$ and 8.2, H-5), 7.26 (2H, d, $J = 8.4$ , H-3',5'), 4.46 (1H, br s, COQH), 3.55 (2H, s, CH <sub>2</sub> )                                                                                                                                                                                                                                                                    |
| 12    | 239–242 (a)            | 95        | $C_{17}H_{13}N_3O_4$    | 3450, 3320, 1720,<br>1690                 | 401, 290, 217,<br>208           | [B] 10.59 (1H, s, NH), 8.00 (1H, d, $J = 8.0$ , arom.), 7.87 (2H, d, $J = 8.4$ , H-2',6'), 7.82–7.70 (2H, m, arom.), 7.60–7.45 (1H, m, arom.), 7.30 (2H, d, $J = 8.4$ , H-3',5'), 4.60 (2H, br s, 2 COOH) 3.57 (2H s, CH.)                                                                                                                                                                                                                                                                                             |
| 13    | 178–180                | 80        | $C_{18}H_{12}F_3N_3O_4$ | 3350, 3200, 1710                          | 403, 302, 204                   | [B] 10.70 (1H, s, NH), 8.14 (1H, d, $J = 8.4$ , H-5), 8.05 (1H, d, $J = 1.8$ , H-8), 7.87 (2H,d, $J = 8.6$ , H-2',6'), 6.65 (1H, dd, $J = 8.4$ and 1.8, H-6), 7.32 (2H, d, $J = 8.6$ , H-3',5'), 4.20 (2H, br s 2 COOH) 3.59 (2H s CH)                                                                                                                                                                                                                                                                                 |
| 14    | 162–163                | 93        | $C_{17}H_{11}F_2N_3O_4$ | 3300, 1710                                | 408, 290, 215                   | [B] 10.60 (1H, s, NH), 7.87 (1H, dd <sup>p</sup> , $J = 11.2$ and 8.2, H-8), 7.80 (2H, d, $J = 8.2$ , H-2',6'),<br>7.62 (1H, dd, $J = 11.2$ and 8.2, H-5), 7.28 (2H, d, $J = 8.2$ , H-3), 7.28 (2H, d, $J = 8.2$ ,<br>H-3',5') 4.74 (2H, br s, 2 COOH), 3.56 (2H, s, CH)                                                                                                                                                                                                                                               |
| 15    | 140–143                | 30        | $C_{31}H_{32}N_4O_5$    | 3260, 1710                                | 371, 270, 208                   | [A] 8.26–7.75 (4H, m, arom.), 7.80 (2H, d, $J = 8.4$ , H-2',6'), 7.70–7.45 (4H, m, arom.), 7.28 (2H, d, $J = 8.4$ , H-3',5'), 7.11 (1H, s, NH), 6.15 (1H, d, $J = 7.8$ , NH), 4.68–4.52 (1H, m, CH), 4.14 (2H, q, CH <sub>2</sub> ), 4.10 (2H, q, CH <sub>2</sub> ), 3.59 (2H, s, CH <sub>2</sub> ), 2.45–1.80 (4H, m, CH, -CH <sub>2</sub> ), 1.29 (3H, t, CH <sub>2</sub> ), 1.23 (3H, t, CH <sub>2</sub> )                                                                                                          |
| 16    | 159–162 (a)            | 74        | $C_{29}H_{30}N_4O_5S$   | 3300, 1720                                | 386, 277, 194                   | [A] 8.00–7.75 (3H, m, arom.), 7.85 (2H, d, $J = 8.6$ , H-2',6'), 7.70–7.45 (4H, m, arom.), 7.31 (2H, d, $J = 8.6$ , H-3',5'), 6.18 (1H, d, NH), 4.68–4.56 (1H, m, CH), 4.18 (2H, q, CH <sub>2</sub> ), 4.11 (2H, q, CH <sub>2</sub> ), 3.61 (2H, s, CH <sub>2</sub> ), 2.40–1.90 (4H, m, CH <sub>2</sub> –CH <sub>2</sub> ), 1.26 (3H, t, CH <sub>3</sub> ), 1.23 (3H, t, CH <sub>3</sub> )                                                                                                                            |
| 17    | 169–170 (a)            | 73        | $C_{25}H_{26}F_2N_4O_5$ | 3370, 3300, 1740,<br>1720, 1660           | 381, 281, 204                   | [A] 8.36 (1H, s, H-3), 7.70 (1H, dd <sup>p</sup> , $J = 11.4$ and 8.0, H-8), 7.69 (2H, d, $J = 8.6$ , H-2',6'), 7.50 (1H, dd, $J = 11.4$ and 8.0, H-5), 7.28 (2H, d, $J = 8.6$ , H-3',5'), 7.17 (1H, s, NH), 6.29 (1H, d, $J = 8.0$ , NH), 4.70–4.55 (1H, m, CH), 4.18 (2H, q, CH <sub>2</sub> ), 4.12 (2H, q, CH <sub>2</sub> ), 4.12 (2H, q, CH <sub>2</sub> ), 3.60 (2H, s, CH <sub>2</sub> ), 2.45–1.90 (4H, m, CH <sub>2</sub> –CH <sub>2</sub> ), 1.27 (3H, t, CH <sub>3</sub> ), 1.23 (3H, t, CH <sub>3</sub> ) |

Table 1 (Continued)

| Comp. | m.p. (°C) <sup>a</sup> | Yield (%) | Analysis for                  | IR (nujol) ( $v_{max}$ cm <sup>-1</sup> ) | UV (EtOH) $(\lambda_{max} nm)$ | <sup>1</sup> H NMR, $\delta_{\rm H}$ (J in Hz) <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|------------------------|-----------|-------------------------------|-------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18    | 254–256 (a)            | 38        | $C_{26}H_{28}N_4O_7$          | 3280, 1730                                | 401, 295, 217                  | [C] 13.36 (1H, s, NH), 8.51 (1H, d, $J = 7.6$ , NH), 8.01 (1H, d, $J = 7.8$ , arom.), 7.86 (2H, d, $J = 8.6$ , H-2',6'), 7.72–7.58 (2H, m, arom.), 7.45–7.38 (1H, m, arom.), 7.26 (2H, d, $J = 8.6$ , H-3',5'), 4.32–4.20 (1H, m, CH), 4.08 (2H, q, CH <sub>2</sub> ), 4.05 (2H, q, CH <sub>2</sub> ), 3.45 (2H, s, CH <sub>2</sub> ), 2.38 (2H, t, CH <sub>2</sub> ), 2.06–1.90 (2H, m, CH <sub>2</sub> ), 1.17 (3H, t, CH <sub>2</sub> ), 1.16 (3H, t, CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19    | 236–240                | 10        | $C_{27}H_{27}F_3N_4O_7$       | 1710                                      | 305, 220, 206                  | [B] 13.14 (1H, s, NH), 8.27–8.16 (2H, m, H-6,8), 7.92 (2H, $J = 7.8$ , H-2,6), 7.52 (1H, d, $J = 9.0$ , H-5), 7.30 (2H, d, $J = 7.8$ , H-3,5'), 4.43–4.26 (1H, m, CH), 4.14 (2H, q, CH <sub>2</sub> ), 4.10 (2H, q, CH <sub>2</sub> ), 3.52 (2H, s, CH <sub>2</sub> ), 2.40–1.90 (4H, m, CH <sub>2</sub> –CH <sub>2</sub> ), 1.25 (3H, t, CH <sub>3</sub> ), 1.23 (3H, t, CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20    | 152–155 (a)            | 40        | $C_{26}H_{26}F_{2}N_{4}O_{7}$ | 3280, 1730                                | 404, 290, 210                  | [C] 13.44 (1H, s, 1H), 8.51 (1H, d, $J = 7.4$ , NH), 8.04 (2H, d, $J = 10.8$ and 8.0, H-8), 7.82 (2H, d, $J = 8.0$ , H-2',6'), 7.68 (1H, dd, $J = 10.8$ and 8.0, H-5), 7.26 (2H, d, $J = 8.0$ , H-3',5'), 4.30-4.13 (1H, m, CH), 4.08 (2H, q, CH <sub>2</sub> ), 4.04 (2H, q, CH <sub>2</sub> ), 3.46 (2H, s, CH <sub>2</sub> ), 2.38 (2H, t, CH <sub>2</sub> ), 2.06-1.90 (2H, m, CH <sub>2</sub> ), 1.17 (6H, t, 2 CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 21    | 160–163                | 95        | $C_{27}H_{24}N_4O_5$          | 3380, 3240, 1700                          | 368, 270, 208                  | [B] 7.68–7.58 (3H, m, arom.), 7.74 (2H, d, <i>J</i> = 8.2, H-2',6'), 7.72 (6H, m, arom.), 7.29 (2H, d, <i>J</i> = 8.2, H-3',5'), 7.11 (1H, d, <i>J</i> = 7.6, NH), 4.58–4.46 (1H, m, CH), 5.58 (2H, s, CH <sub>2</sub> ), 2.40–1.90 (4H, m, CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22    | 122–125                | 75        | $C_{25}H_{22}N_4O_5S$         | 3400, 3260, 1710                          | 387, 276, 193                  | [A] 7.95–7.73 (2H, m, arom.), 7.77 (2H, d, $J = 8.8$ , H-2',6'), 7.70–7.40 (4H, m, arom.), 7.32 (2H, d, $J = 8.8$ , H-3',5'), 7.30–7.26 (1H, m, arom.), 6.54 (1H, d, $J = 7.6$ , NH), 4.60–4.50 (1H, m, CH) 3.60 (2H, s, CH) 2.50–1.90 (4H, m, CH)–CH.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 23    | 218–220                | 83        | $C_{21}H_{18}F_2N_4O_5$       | 3360, 3300, 1730,<br>1660                 | 382, 281, 204                  | [B] 9.70(1H, s, NH), 8.52(1H, s, H-3), 7.94(1H, J,7.8, NH), 7,85(2H, d, J, 8.4, H-2',6'),<br>7:63(1H, dd, J 10.6 and 8.6, H-8), 7.50 (1H, dd, J 11.6 and 8.2, H-5), 7.28(2H, d, J 8.4, H-3',5'), $443-438(1H, m, CH) = 353(2H, s, CH) = 240-180(4H, m, CH) = CH = CH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24    | 169–172                | 74        | $C_{22}H_{20}N_4O_7$          | 3250, 1720, 1700                          | 402, 291, 217, 205             | $\begin{array}{l} \text{(1)} (1, 5), (1, 4, 5), (1, 1, 1, 1), (1, 1), (2, 5), (2, 1), (3, 1), (2, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1),$ |
| 25    | 218–222                | 61        | $C_{23}H_{19}F_3N_4O_7$       | 3310, 2250, 1700                          | 389, 296, 209                  | [B] 9.76 (1H, s, NH), 8.10–7.95 (1H, m, arom.), 7.92 (2H, d, $J = 8.2$ , H-2',6'), 7.65–7.55 (2H, m, arom.), 7.32 (2H, d, $J = 8.2$ , H-3',5'), 4.60–4.45 (1H, m, CH), 2.50–1.90 (4H, m, CH <sub>2</sub> -CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 26    | 105-107 (dec.)         | 87        | $C_{22}H_{18}F_2N_4O_7$       | 1710                                      | 405, 292, 203                  | [B] $10.54$ (1H, s, NH), 8.35 (1H, d, $J = 6.6$ , NH), 7.98–7.82 (2H, m, H-5,8), 7.78 (2H, d, $J = 7.8$ , H-2',6'), 7.30 (2H,d, $J = 7.8$ , H-3',5'), 5.70 (3H, br s, 3 COOH), 4.40–4.24 (1H, m, CH), 3.51 (2H, s, CH), 2.40–1.90 (4H, m, CH)–CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27    | 111–115 (a)            | 20        | $C_{35}H_{43}N_5O_{10}$       | 3300, 1730, 1660                          | 419, 292, 222                  | [A] 11.20 (1H, s, NH), 8.92 (1H, d, $J = 7.6$ , NH), 7.97 (2H, d, $J = 8.2$ , H-2',6'), 7.96–7.45 (4H, m, arom.), 7.29 (2H, d, $J = 8.2$ , H-2',6'), 6.18 (1H, d, $J = 7.6$ , NH), 4.90–4.76 (1H, m, CH), 4.70–4.55 (1H, m, CH), 4.29 (2H, q, CH <sub>2</sub> ), 4.25–4.05 (6H, m, 3 CH <sub>2</sub> ), 2.60–1.80 (4H, m, CH <sub>2</sub> –CH <sub>2</sub> ), 1.34 (3H, t, CH <sub>3</sub> ), 1.35–1.20 (9H, m, 3 CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 28    | Yellow oil             | 10        | $C_{36}H_{42}F_3N_5O_{10}$    | , 3320, 1720                              | 400, 303, 215                  | [A] 11.24 (1H, s, NH), 8.40 (1H, d, $J = 7.8$ , NH), 8.02 (1H, d, $J = 2.0$ , H-8), 7.98 (1H, d, $J = 8.4$ , H-5), 7.67 (2H, d, $J = 8.4$ , H-2',6'), 7.57 (1H, dd, $J = 8.6$ and 2.0, H-6), 7.25 (2H, d, $J = 8.4$ , H-3',5'), 6.12 (1H, d, $J = 7.2$ , NH), 4.80–4.70 (1H, m, CH), 4.60–4.50 (1H, m, CH), 4.19 (2H, q, CH <sub>2</sub> ), 4.20–4.00 (6H, m, 3 CH <sub>2</sub> ), 3.54 (2H, s, CH <sub>2</sub> ), 2.50–1.80 (8H, m, 2 CH <sub>2</sub> –CH <sub>2</sub> ), 1.48 (3H, t, CH <sub>3</sub> ), 1.20–1.10 (9H, m, 3 CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

<sup>a</sup> Purification procedure: (a), crystallized from ethanol; <sup>p</sup>, partially obscured by other resonances. <sup>b</sup> Solvent:  $[A] = CDCl_3$ ;  $[B] = CDCl_3-DMSO-d_6$  (3:1);  $[C] = DMSO-d_6$ .



Scheme 1.

values, analytical and spectroscopic data are reported in Table 1.

### 4. Pharmacology

The tested compounds 6, 7, 8, 12, 13, 15, 16, and 20 of Fig. 1 and Scheme 1 were incontrovertibly selected by National Cancer Institute of Bethesda among the 26 submitted. Evaluation of anticancer activity was performed following the known [13] in vitro disease-oriented antitumour screening program against a panel of

60 human tumour cell lines. The anticancer activity of each compound is deduced from dose-response curves and is presented in three different Tables according to the data provided by NCI. In Table 2 the response parameters GI<sub>50</sub>, TGI and LC<sub>50</sub> refer to the concentration of the agent in the assay that produced 50% growth inhibition, total growth inhibition, 50% cytotoxicity, respectively, and are expressed as Mean Graph Midpoints. In Table 3 we reported the activities of those compounds which showed percent growth inhibition greater than 40% on subpanel cell-lines at 10<sup>-4</sup> molar concentration. In Fig. 2 we reported the activities

Table 2

 $-\log GI_{50}$ ,  $-\log TGI$ ,  $-\log LC_{50}$  mean graph midpoints (MG-MID) <sup>a</sup> of in vitro inhibitory activity test for compounds 6, 7, 8, 12, 13, 15, 16, and 20 against human tumour cells lines <sup>b</sup>

| Comp. | -log Gl | $I_{50} = \mu M$ | -log TGI | -log LC <sub>50</sub> |  |
|-------|---------|------------------|----------|-----------------------|--|
| 6     | 4.26    | 53.70            | 4.03     | 4.00                  |  |
| 7     | 4.20    | 61.66            | 4.02     | 4.00                  |  |
| 8     | 4.40    | 38.90            | 4.08     | 4.00                  |  |
| 12    | 4.00    | 100.00           | 4.00     | 4.00                  |  |
| 13    | 4.07    | 85.11            | 4.00     | 4.00                  |  |
| 15    | 4.35    | 43.65            | 4.05     | 4.00                  |  |
| 16    | 4.26    | 53.70            | 4.01     | 4.00                  |  |
| 20    | 4.15    | 70.79            | 4.02     | 4.00                  |  |

<sup>&</sup>lt;sup>a</sup> (MG-MID) mean graph midpoints, the average sensitivity of all cell lines towards the test agent.

<sup>b</sup> From NCI.

of the compound 15 which showed percent growth inhibition greater than 40% on subpanel cell-lines at 10<sup>-5</sup> molar concentration.

### 4.1. Results of the in vitro pharmacological anticancer assays

The data of in vitro anticancer activity reported in Table 2 established that the average sensitivity of all cell lines towards the tested agent, represented as Mean Graph Midpoints of GI<sub>50</sub>, falls in the range of 38.90-100  $\mu$ M, whereas the TGI is very close to LC<sub>50</sub> which was identical for all compounds at the highest concentration (100.00  $\mu$ M). However, from this table it is easy to see that the most active agent is compound 8 followed in decreasing order by 15 < 6 = 16 < 7 < 20 < 13. From the data of Table 3 we can observe that compound 8 exhibited the largest sensitivity upon all subpanel cell lines (53 over 60 cell lines) recording an interesting selective percent growth inhibition for renal ACHN (191%), UO-31 (183%) and breast cancer MDA-MB-231/ATCC (144%) cell lines at  $10^{-4}$  molar concentration. Compound 15 confirmed analogous sensitivity at lower level (37 over 60) and exhibited various selectivities at  $10^{-5}$  molar concentration (Fig. 2). Compounds 12 and 13 which represent the products of hydrolysis of 6 and 7 appear to be devoid of intrinsic activity at all the concentrations examined with the only exception for 13 that in the leukemia SR32 cell line recorded % growth inhibition (58, 63, 68, 66) between  $10^{-8}$  and  $10^{-5}$  M, respectively. The fact of the observed inactivity for the free acids in this test is not surprising since we have often recorded this behaviour in similar cases [1-9], possibly because of their low solubility in the culture medium. Comparison of the activity as expressed as GI<sub>50</sub> (Mean Graph-Midpoint) of the above described compounds with those of the previously reported analogous nor-derivatives was applicable in a few cases (6, 7, 15, 16) (Table 4). From this table we can observe that only with the exception of compound 6 the nor derivatives resulted more active. A study of structure-activity relationships is excluded by the narrow number of derivatives tested. An observation has to be marked for the case of 8 that is the unique example of an active compound bearing two atoms of fluorine in the 6,7-positions of quinoxaline ring among all the compounds so far described by us. This substitution is somewhat profitable also in compound 20 with  $GI_{50}$  whose value was twice that of 8. In conclusion the results obtained seem to indicate that this type of homologation of the aminobenzoyl-L-glutamate side chain and of its precursor is not profitable under the conditions examined.



## Percent growth inhibition of compound 15 against single tumour cell lines

at 10<sup>-5</sup> M



Table 3

Percentage tumour growth inhibition recorded on subpanel cell lines at  $10^{-4}$  M of compounds 6, 7, 8, 12, 13, 15, 16, and 20 a

| Panel/cell-lines           | 6        | 7    | 8        | 12    | 13 | 15       | 16       | 20    |
|----------------------------|----------|------|----------|-------|----|----------|----------|-------|
| Leukaemia                  |          |      |          |       |    |          |          |       |
| CCRF-CEM                   | *        | *    | 78       | *     | *  | *        | *        | 147   |
| HL-60(TB)                  | *        | *    | 92       |       |    | *        | *        | 141   |
| K-562                      | nt       | nt   | 80       | nt    | nt | *        | 41       | 94    |
| MOLT-4                     | *        | *    | nt       | *     | *  | *        | 41       | 83    |
| RPMI-8226                  | nt       | nt   | 82       | nt    | *  | *        | *        | nt    |
| SR                         | *        | *    | 93       | *     | 54 | *        | 61       | 141   |
| Non small cell lung cancer |          |      |          |       |    |          |          |       |
| A549/ATCC                  | 77       | *    | 56       | *     | *  | 53       | 57       | *     |
| FKVX                       | 81       | *    | 132      | *     | *  | 56       | 62       | *     |
| HOP-62                     | 85       | 83   | 42       | *     | *  | 92       | 76       | *     |
| HOP-92                     | 80       | 82   | 122      | *     | *  | 144      | nt       | 109   |
| NCI H226                   | 01       | 103  | 60       | *     | *  | 53       | 13       | 107   |
| NCI-H220                   | 91<br>67 | 105  | 122      | *     | *  | 94       | 43<br>70 | +/    |
| NCI-H22                    | 54       | 92   | 122      | *     | *  | 04       | /9       | *     |
| NCI-H322M                  | 54       | *    | 68       | *     | *  | *        | 60       | *     |
| NCI-H460                   | /1       | *    | 59       | *     | *  | *        | 53       | ~     |
| NCI-H522                   | 54       | 68   | 139      | *     | *  | 83       | 81       | 82    |
| Colon cancer               |          |      |          |       |    |          |          |       |
| COLO 205                   | *        | *    | 83       | *     | *  | *        | *        | *     |
| HCC-2998                   | nt       | nt   | 118      | nt    | nt | *        | 43       | 42    |
| HCT-116                    | 47       | *    | 58       | *     | *  | *        | *        | 54    |
| HCT-15                     | *        | *    | 99       | *     | *  | *        | *        | *     |
| HT29                       | *        | *    | 65       | *     | *  | *        | *        | *     |
| KM12                       | *        | *    | 45       | 44    | *  | *        | 45       | *     |
| SW-620                     | *        | *    | 74       | *     | *  | *        | 46       | 58    |
| SNC cancer                 |          |      |          |       |    |          |          |       |
| SF-268                     | 72       | 78   | 61       | *     | *  | 158      | 78       | 91    |
| SF 205                     | 80       | 50   | 56       | *     | *  | 133      | 70       | *     |
| SE 520                     | 82       | 1222 | *        | *     | *  | 02       | /1<br>80 | 49    |
| SND 10                     | 124      | 01   | 70       | *     | *  | 92       | 07       | 40    |
| SIND-19                    | 154      | 91   | 70       | *     | *  | 01       | 83<br>00 | 117   |
| SINB-75                    | 103      | 143  | 57       | *     | *  | 133      | 99       | 11/   |
| 0251                       | /4       | /3   | 96       |       | *  | 108      | /5       |       |
| Melanoma                   | 10       |      |          |       |    |          |          |       |
| LOX IMVI                   | 48       | *    | 92       | *     | *  | *        | nt       | 79    |
| MALME-3M                   | 82       | *    | 45       | *     | *  | 63       | 67       | 53    |
| M14                        | 45       | *    | 89       | *     | *  | 60       | *        | *     |
| SK-MEL-2                   | 52       | 60   | 103      | *     | *  | 111      | 64       | 127   |
| SK-MEL-28                  | *        | *    | 59       | *     | *  | *        | 45       | 49    |
| SK-MEL-5                   | 67       | 43   | 72       | *     | *  | 46       | 71       | 47    |
| UACC-257                   | 48       | *    | 75       | *     | *  | *        | 54       | 78    |
| UACC-62                    | 74       | 67   | 72       | *     | *  | 62       | 58       | 63    |
| Ovarian cancer             |          |      |          |       |    |          |          |       |
| IGROV1                     | 65       | 47   | nt       | *     | *  | 64       | *        | nt    |
| OVCAR-3                    | 46       | *    | 73       | *     | *  | 50       | 86       | 40    |
| OVCAR-4                    | 57       | 91   | 65       | *     | *  | 53       | 78       | *     |
| OVCAR-5                    | *        | *    | *        | *     | *  | 51       | *        | *     |
| OVCAR-8                    | 67       | 90   | 96       | *     | *  | 69       | nt       | 51    |
| SK-OV-3                    | 69       | 71   | *        | *     | *  | 90       | 75       | *     |
| Benal cancer               | 0)       | / 1  |          |       |    | 20       | 15       |       |
|                            | 86       | 02   | 19       | *     | *  | 06       | 70       | *     |
| A 408                      | 105      | 93   | 40<br>nt | *     | *  | 90<br>74 | 50       | *     |
| A490                       | 103      | 92   | 101      | *     | *  | 74       | 50       | *     |
| ACHN                       | 08       | 83   | 191      | *     | *  | 12       | 50       | *     |
| UANI-I                     | 20       | 85   | 152      | т<br> |    | 62       | 100      | *<br> |
| KXF 393                    | 113      | 136  | 82       | *     | *  | 127      | 123      | *     |
| SN12C                      | 44       | *    | 56       | *     | *  | 45       | 44       | 59    |
| TK-10                      | 75       | 70   | *        | *     | *  | 119      | 107      | *     |
| UO-31                      | 142      | *    | 183      | *     | *  | *        | *        | *     |
| Prostate cancer            |          |      |          |       |    |          |          |       |
| PC-3                       | 67       | *    | 63       | *     | *  | 75       | 64       | *     |
| DU-145                     | 51       | *    | 99       | *     | *  | *        | 68       | *     |
| Breast cancer              |          |      |          |       |    |          |          |       |
| MCF7                       | 58       | 51   | 78       | *     | *  | 44       | 73       | 53    |
|                            |          |      |          |       |    |          |          |       |

| Panel/cell-lines | 6   | 7   | 8   | 12 | 13 | 15  | 16  | 20  |
|------------------|-----|-----|-----|----|----|-----|-----|-----|
| MCF7/ADR-RES     | 65  | 42  | 70  | *  | *  | 59  | 57  | *   |
| MDA-MB-231/ATCC  | *   | *   | 144 | nt | nt | 127 | 43  | 80  |
| HS 578T          | 106 | 108 | 62  | *  | *  | 107 | 73  | 75  |
| MDA-MB-435       | *   | *   | 59  | *  | *  | *   | 65  | 43  |
| BT-549           | 99  | 58  | 66  | *  | *  | 67  | 46  | 71  |
| T-47D            | 69  | *   | 69  | *  | *  | *   | 111 | 110 |
| MDA-N            | *   | *   | 74  | *  | *  | *   | 47  | 47  |

<sup>a</sup>\*, below 40% growth inhibition; nt, not tested at this molar concentration.

#### Table 4

Comparison of mean graph activity between compounds 6, 7, 15, 16 and the corresponding nor derivatives of the cited papers (Ref)

| Comp. (Ref)   | GI <sub>50</sub> | TGI  | LC <sub>50</sub> |
|---------------|------------------|------|------------------|
| 6             | 4.26             | 4.00 | 4.00             |
| 12 [3]        | 4.03             | 4.00 | 4.00             |
| 7             | 4.20             | 4.02 | 4.00             |
| 14 [3]        | 4.21             | 4.03 | 4.00             |
| 15            | 4.35             | 4.05 | 4.00             |
| <b>29</b> [3] | 5.17             | 4.55 | 4.00             |
| 16            | 4.26             | 4.01 | 4.00             |
| 7 [3]         | 4.57             | 4.01 | 4.00             |

#### References

- M. Loriga, M. Fiore, P. Sanna, G. Paglietti, Quinoxaline chemistry: Part 4. 2-(*R*)-Anilinoquinoxalines as non classic antifolate agents. Synthesis, structure elucidation and evaluation of in vitro anticancer activity, Farmaco 50 (1995) 289–301.
- [2] M. Loriga, M. Fiore, P. Sanna, G. Paglietti, Quinoxaline chemistry. Part 5. 2-(*R*)-Benzylaminoquinoxalines as non classical antifolate agents. Synthesis and evaluation of in vitro anticancer activity, Farmaco 51 (1996) 559–568.
- [3] M. Loriga, S. Piras, P. Sanna, G. Paglietti, Quinoxaline chemistry. Part 7. 2-[Aminobenzoates]- and 2[aminobenzoylglutamate]-quinoxalines as classical antifolate agents. Synthesis and evaluation of in vitro anticancer, anti-HIV and antifungal activity, Farmaco 52 (1997) 157–166.
- [4] M. Loriga, P. Moro, P. Sanna, G. Paglietti, Quinoxaline chemistry. Part 8. 2-[Anilino]-3-[carboxy]-6(7)-substituted quinoxalines as non classical antifolate agents. Synthesis and evaluation of in vitro anticancer, anti-HIV and antifungal activity, Farmaco 52 (1997) 531–537.
- [5] G. Vitale, P. Corona, M. Loriga, G. Paglietti, Quinoxaline chemistry. Part.9. Quinoxaline analogues of TMQ and 10propargyl-5,8-dideaza folic acid and its precursors. Synthesis and

evaluation of in vitro anticancer activity, Farmaco 53 (1998) 139-149.

- [6] G. Vitale, P. Corona, M. Loriga, G. Paglietti, Quinoxaline chemistry. Part.10. Quinoxaline 10-oxa analogues of TMQ and 10-propargyl-5,8-dideaza folic acid and its precursors. Synthesis and evaluation of in vitro anticancer activity, Farmaco 53 (1998) 150–159.
- [7] P. Corona, G. Vitale, M. Loriga, G. Paglietti, M.P. Costi, Quinoxaline chemistry. Part.11. 3-Phenyl-2(phenoxy-and phenoxymethyl)-6(7) or 6,8-substituted quinoxalines and N-[4-(6(7)substituted or 6,8-disubstituted-3-phenylquinoxalin-2-yl)hydroxy or hydroxymethyl]benzoylglutamates. Synthesis and evaluation of in vitro anticancer activity and enzymatic inhibitory activity against dihydrofolate reductase and thymidylate synthase, Farmaco 53 (1998) 480–493.
- [8] G. Vitale, P. Corona, M. Loriga, G. Paglietti, Quinoxaline chemistry. Part.12. 3-Carboxy-2[phenoxy]-6(7)substituted quinoxalines and N-[4-(6(7) substituted-3-carboxyquinoxaline-2yl)hydroxy] benzoylglutamates. Synthesis and evaluation of in vitro anticancer activity, Farmaco 53 (1998) 594–601.
- [9] P. Corona, G. Vitale, M. Loriga, G. Paglietti, Quinoxaline chemistry. Part 13: 3-Carboxy-2-benzylamino-substituted quinoxalines and N-[4[(3-carboxyquinoxalin-2-yl)aminomethyl]benzoyl]-L-glutamates: synthesis and evaluation of in vitro anticancer activity, Farmaco 55 (2000) 77–86.
- [10] A.H. Gowenlok, G.T. Newbold, F.S. Spring, Synthesis of 2monosubstituted and 2,3-disubstituted quinoxalines, J. Chem. Soc. (1945) 622–625.
- [11] Y. Ahmad, M.S. Habib, Ziauddin, B. Bakhtiari, Quinoxalines derivatives. IX. An unusual chlorine substitution in quinoxalines *N*-oxides. Its scope and limitations, J. Org. Chem. 31 (1966) 2613–2616.
- [12] L.A. McQuaid, E.C.R. Smith, K.K. South, C.H. Mitch, D.D. Schoepp, R.A. True, D.O. Calligaro, P.J. O'Malley, D. Lodge, P.L. Ornstein, Synthesis and excitatory amino acid pharmacology of a series of heterocyclic-fused quinoxalinones and quinazolinones, J. Med. Chem. 35 (1992) 3319–3324.
- [13] M.R. Boyd, Status of the NCI preclinical antitumor drug discovery screen, Princ. Pract: Oncol. 3 (1989) 1–12.